

Assessing the Transferability of Ecological Models to New Settings

Theodore H. DeWitt¹, Jessica B. Moon², Melissa Errend³, and Lauri Green⁴

¹US EPA, Newport, OR ²Ecoscape Analytics LLC, Collegeville, PA ³Integrated Statistics, NOAA Fisheries, Falmouth, MA ⁴Bloomsburg Univ., Bloomsburg, PA

Office of Research and Development National Health & Environmental Effects Research Laboratory, Western Ecology Division

4 December 2018

The views expressed in this presentation are those of the author[s] and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency

Problem:

Models useful to calculate ecological endpoints at data-poor locations, aka, model transfer

Model transfer practices often ad-hoc, poorly documented
• can result in inaccurate or indefensible results
• lack of transparency → lack of trust
• wasted resources

Goal: A practical methodology to assess whether a model can be defensibly transferred to a new site

<u>Key concept</u>: a model that worked at "previous" sites will work at a "new" site if the previous & new sites have the same *context niche*

Example: Should the CoC Model¹ be used

to assess wetland condition in a southern Oregon wetland?

CoC = 8.16 - 0.73(pH) - 0.29(LDI)

- CoC² wetland condition index based on plant spp.
- LDI³ landscape development index (disturbance)

¹Moon et al. (2017) ²Lopez & Fennessy (2002) ³Brown & Vivas (2005) & Lane et al. (2012)

4

Assess Context Similarity (1) Select Model Context Variables: Intrinsic & Extrinsic

Model Context Variables = biophysical variables that are reasonably expected to influence the process being modeled

Assess Context Similarity (1)

Select Model Context Variables: Intrinsic & Extrinsic

Problem

6

Assess Context Similarity (2) Quantifying Context Variables

USGS National Land Cover Database

US EPA National Wetland Condition Assessment 2011

WorldClim – Global climate data

Professional country Aussentiant Calculation Region Linear anyone to have a List Search List

Penn State Riparia Floristic Quality Assessment Calculator

7

Problem

Concepts

Framework

Assess Context Similarity (3) Setting Acceptability Criteria

<u>Context Niche Similarity Analysis</u>: ExDet¹ (Extrapolation Detection Tool)

Metrics: Novelty Type 1 & 2 dissimilarity (NT1, NT2) of "new" site

Criteria: user sets value(s) of the metrics

This study NT1 ≤ 1.0 (OR site has similar context var. range)

NT2 ≤ **1.0** (OR site context within correlation structure)

Assess Context Similarity (4) Context Similarity Analysis

Results of Similarity Analysis (ExDet)

	NT1 _{OR}	NT2 _{OR}
Criteria	≤1	≤1
Observed	0	0.08

Decision:

OR wetland site is similar to "previous" sites

Proceed to determine expected error

If context niches not similar:

select a different model, use an estimate of endpt, or do site-specific study

9

Problem

Concepts

Framework

Example

Assess Model's Expected Performance (1) Set acceptability criteria

- 1. Select most similar "previous" sites to compare to "new" site
 - subset of all sites; similarity metric (var. range, % of sites, etc)
- 2. Select "model error" and "uncertainty" metrics
 - error: f {observed vs predicted}; difference, r²
 - uncertainty: variance in error; (SD, CoV)
- 3. Set tolerance thresholds for error & uncertainty metrics

Assess Model's Expected Performance (1) Set acceptability criteria

- 1. Select most similar "previous" sites to compare to "new" site
 - subset of all sites; similarity metric (var. range, % of sites, etc)
- 2. Select "model error" and "uncertainty" metrics
 - error: *f* {observed vs predicted}; difference, r²
 - uncertainty: variance in error; (SD, CoV)
- 3. Set tolerance thresholds for error & uncertainty metrics

<u>This study</u>

Most similar sites = 10% with context values closest to OR site Error: mean (predicted CoC - measured CoC) \leq 2 Uncertainty: CV of mean error \leq 20%

Assess Model's Expected Performance (2) Est. model error at "most similar" sites

Model Error = mean (measured CoC – predicted CoC)

	Error (mean)	Uncertainty (CV)
Criteria	≤ 2	≤ 20%
Observed	1.26	105.82

Decision:

Model can be applied at OR site, but expect uncertainty in its accuracy

Invest in validation at OR site

12 Problem

Framework

14

Unit (or Endpt) Transfer Framework

Take-Away's

- Model transfers are necessary but fraught
- A methodology to assess a model's transferability:
 - provides consistency
 - increases legitimacy thru transparency
 - increases efficiency, reduces costs
- Framework also useful for transferability of unit values

More...

- Moon et al. (2017) *Ecosphere* 8(10):e01974 Model application niche analysis: assessing the transferability and generalizability of ecological models
- Yates et al. (2018) *Trends in Ecol. Evol.* 33:790 Outstanding challenges in the transferability of ecological models

Problem